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Abstract 
A plant breeder has to deal with multiple traits and many of these are genetically complex. The 
technologies that support plant breeding have progressed to a stage where there are now many options 
available to the applied breeder for the design of a breeding strategy. However, at this time the efficacies 
of many of the molecular breeding strategies that have been proposed for complex traits have not been 
empirically evaluated and compared to progress from conventional selection on phenotype. We seek a 
theoretical framework to better understand the power of phenotype-based (conventional) and molecular-
based plant breeding strategies to change multiple complex traits by selection, and to study their relative 
strengths and weaknesses. For many traits high throughput technologies for studying DNA sequences 
have enabled us to move from studying phenotypes to the identification of candidate genomic regions and 
genes. To complement and focus our gene discovery capabilities we seek appropriate methods to develop 
gene-to-phenotype (GP) models that will lead to molecular-based strategies that are more efficient than 
the conventional pedigree-based breeding process. Advances in computer simulation, combined with 
large experimental data sets, provide the opportunity to consider the genetic architecture of traits on a 
continuum from simple to complex. We discuss the foundations of a suitable quantitative framework and 
apply this to examine aspects of response to selection. With this framework we can show that as the 
complexity of the genetic architecture of traits increases the opportunities for improving on phenotypic 
selection by molecular-enhanced strategies increase, but in parallel the requirements for development of 
adequate GP models become more challenging.  
 
Media summary 
Effectiveness of improving complex traits using molecular breeding strategies can be modeled using 
advances in computer simulation, theoretical gene-to-phenotype models and large experimental data sets. 
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Introduction 
Plant breeders have always been confronted with the problem of predicting the expected phenotypic 
performance of new individuals with untested gene combinations (new genotypes) with limited 
information on the gene-to-phenotype (GP) architecture for traits. The pedigree-based breeding strategies 
used today have emerged from a continual process of testing and refinement by applied breeders. There 
are opportunities to apply molecular technologies to further refine these breeding strategies. Ultimately it 
will not be sufficient to demonstrate that we can predict phenotypic variation and the phenotypic changes 
that result from selection using genetic information, but that this knowledge allows us to improve on the 
outcomes that are currently being achieved by conventional selection on phenotype alone. To examine the 
potential of molecular-enhanced breeding strategies to achieve this end, we apply a theoretical framework 
for GP models that includes important details of the genetic architecture of complex traits, e.g. epistasis, 
gene-by-environment interactions. With this theoretical framework it is becoming feasible to undertake 
evaluations of the merits of molecular-enhanced breeding strategies.  
 
While genetics provides the scientific basis for the breeding processes we use today, for the majority of 
the history of applied breeding the concept of a gene was unknown. Selection was conducted on the 
phenotypes of individuals in ways that was a mimic of the Darwinian process of natural selection, which 
was itself an undefined concept prior to 1859. Further, for the majority of the 20th Century the genes 
underlying quantitative traits were at best theoretical constructs and were not directly viewed or 
manipulated in breeding programs to bring about changes in phenotype. It was only in approximately the 
last quarter of the 20th Century that we have observed technological advances that provided the 
opportunities to study genetic variation at the DNA sequence level. These technologies have enabled us to 
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go from the phenotype to the gene, and in some cases from the gene to the trait phenotype. Many attempts 
have been made and are currently underway to construct relevant GP models for traits to assist the plant 
breeding process. The approaches being used are diverse and in many cases unproven. This is a time of 
exploration of many novel ideas on how to approach the GP problem. 
 
Quantitative genetic theory, with all of its assumptions, was founded with the goal to understand the 
genetic basis of the variation for quantitative traits and to use this knowledge to make predictions about 
the properties of genes in populations of genotypes and the outcomes of artificial selection and 
evolutionary processes. The assumptions we made in constructing these models appeared reasonable at 
the time and given the available experimental data. Taking a broad view of the relationship between the 
predictions from applying this quantitative genetic theory to applied plant breeding, Coors (1999) 
summarized many of the published recurrent selection studies for the quantitative trait grain yield in corn. 
The synopsis we can take from Coors’ synthesis of published studies strongly suggests that the realized 
progress from selection for this trait is considerably lower than the predicted response. For most involved 
in applied breeding this result is not surprising. However, this quantified observation forces us to consider 
the possible reasons for the discrepancies between the predictions made from classical quantitative 
genetic theory and the realized responses from applied breeding. We may expect that some of the 
simplifying assumptions that we routinely make in classical quantitative genetic theory are incorrect and 
at the core of this discrepancy. However, of the many assumptions made which are more important in 
determining the gap between predictions and realization of genetic progress? Further, can we use the 
genetic knowledge of today to construct improved GP models and would these in turn improve our ability 
to predict the expected outcomes from a breeding program? Despite the significant advances we have 
made in the range of molecular technologies available to study the genetic architecture of traits, the GP 
prediction problem still exists today as a major challenge for most of the important traits in plant 
breeding. If anything, today the magnitude and complexity of the task involved in predicting phenotypic 
variation based on knowledge of DNA sequence variation is now more obvious to a wider audience than 
was previously the case. We will discuss some of the issues involved in dealing with this complexity and 
how these are relevant to the design of conventional and molecular breeding strategies. 
 
Here we describe components of a quantitative framework that can be used to investigate some expected 
properties of traits under the influence of selection for the continuum of simple to complex traits. 
Classical quantitative genetics, in combination with linear statistical models, provides the conventional 
approach to prediction of expected response to selection. The framework we describe here differs from 
much of the classical theoretical framework of quantitative genetics in that it is implemented and the 
predictions are obtained through computer simulation rather than through seeking solutions to linear 
statistical models using approaches from calculus. The motivation for developing and using a simulation 
framework is the difficulty of extending the classical statistical framework to accommodate recognized 
properties of complex traits, particularly effects attributed to features such as gene-by-gene interactions 
(epistasis) and gene-by-environment interactions. The need to accommodate these properties of gene 
action in many GP models is indicated by experimental investigations into the molecular basis of 
regulation of gene expression, signal transduction pathways and other features of genetic variation at the 
DNA sequence level and their influences on phenotypic variation of traits within an organism that is 
undergoing growth and development within an environmental context.  
 
The use of computer simulation to study problems in genetics is not new (e.g. Fraser and Burnell 1970). 
However, many of the early applications of simulation were based on scaling up the classical simple 
Mendelian inheritance models, assuming independence of gene effects from the genes at other loci and of 
environment. Thus, many of the complex interactions we now consider as components of the GP models 
for some of the important traits were not included as features of the early simulation experiments. This 
limitation is not unique to the early genetic simulation experiments. Many of the applications of 
simulation to problems in quantitative genetics today still only consider genes as independent Mendelian 
factors. Such limited treatment of the continuum of GP models is unnecessary today and is not 
recommended. Our own work suggests that such approaches will give an overly optimistic and simplistic 
view of the expected outcomes of conventional and molecular breeding strategies (Cooper and Podlich 
2002; Chapman et al 2003; Peccoud et al. 2004). This body of work also gives some indicators of features 
of the GP relationships that will contribute to the observed discrepancies between predicted and realized 
genetic gain for quantitative traits. 
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The key components of the simulation framework considered in this paper are: (1) definition and 
elaboration of the E(NK) model as an organizing framework for studying GP relationships for traits; (2) 
use of fitness landscape concepts to study the continuum of simple to complex GP models; (3) predicting 
phenotype from genotype and characterization of GP properties using both classical quantitative genetic 
models and landscape specific parameters; (4) studying the continuum from simple to complex trait 
genetics and factors that have a strong influence on the outcomes of directional selection; and (5) some 
preliminary considerations related to interpretation of short-term and long-term responses to selection. 
 
The E(NK) model for traits 
The E(NK) model we discuss here is an extension of the NK gene network model that was introduced and 
used by Kauffman (1993) to study the behavior of gene networks and their influences on organism 
development and evolutionary processes. Here we have confined our application of the E(NK) model to 
the study of issues as they are relevant to plant breeding processes. The E(NK) model allows for the 
property that the influence of a gene network on determination of a trait phenotype can differ among 
environmental conditions. Thus, E identifies different environment-types within the context of a defined 
target population of environments, N identifies the different genes and K identifies the degree of 
connection between subsets of the total set of N genes, i.e. the gene network topology. Thus, in the 
terminology of quantitative genetics the E(NK) model is a finite locus polygenic model that can be 
defined to include effects of epistasis and gene-by-environment interactions. The parentheses around the 
NK term are used to indicate that the N genes can interact in different K ways to determine the trait 
phenotype in different E environment-types. To date we have used the E(NK) model as an organizing 
framework for the design of large scale computer simulation experiments that are conducted to 
investigate both the properties of GP relationships for a continuum of simple to complex genetic models 
and the power of different plant breeding strategies to achieve response to selection along this complexity 
continuum. 
 
Kauffman (1993) gave a detailed explanation of the background and specification of the NK model. The 
background to the E(NK) genetic model and descriptions of its application to specific traits within a plant 
breeding context have been given elsewhere (Podlich and Cooper 1998; Cooper and Podlich 2002; 
Cooper et al. 2002; Peccoud et al. 2004). Here we relate the definition of the E(NK) model to the classical 
finite locus models used in quantitative genetics (e.g. Falconer 1960, Falconer and Mackay 1996; Lynch 
and Walsh 1998). We consider the use of “hybrid models”, where the genetic component of the model is 
based on a combination of “explained” genetic variation attributed to defined genes (or Quantitative Trait 
Loci; QTL) and “unexplained” background genetic variation. The explained component of the genetic 
variation may be defined as an outcome of investigations into the inheritance of a trait by use of suitable 
experimental methods, such as inheritance studies using a genetic or sequence based map of the genome.  
 
Without any loss of generality, in this paper we discuss GP models for traits within the context of a 
typical quantitative trait mapping experiment that can be conducted by a plant breeder. A typical 
experiment involves testing a sample of genotypes from a reference mapping population in a sample of 
environments. The phenotype for the kth observation on the ith genotype in the jth environment (Pijk) can 
be described by the linear equation: 
 

,   (1) 
 

where, Ej is an environmental effect, Gi is a genotypic main-effect, (GE)ij is a genotype-by-environment 
interaction effect, and εijk is a residual effect. Linear statistical models, of the form given in equation (1), 
can be used to analyze means and variances associated with the genotype-environment system based on 
the experimental sample. It should be recognized that equation (1) is not a GP model; it is a statistical 
partition of inter-individual genotypic variation. For a GP model we need a specification of the trait 
performance as an outcome of the combined effects of the N genes influencing the trait. If we use γn to 
refer to gene n, where n = 1 ,…, N, and γg|n to represent the specific g genotypic combinations of alleles 
for gene n, then any individual, represented as a multi-genic genotype Gi, can be considered to have a 
value in environment Ej from the combined effects of the N genes in that environment. We identify the 
combined multi-genic effects of the N genes for genotype i in environment j by Γ(g|N)ij , and rewrite 
equation (1) as a GP model in the form: 

( )ijk j i ij ijkP E G GE ε= + + +
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( )|ijk ijkg N ijP ε= Γ +   .   (2) 

 
We use equation (2) as a compact statement that defines the phenotypic value for a trait measurement k 
on a genotype i in an environment j as the genotypic value, that is the outcome of the combined effects of 
the allele combinations for the N genes, and a noise parameter εijk that can be interpreted as a random 
environmental and/or measurement error effect. From the above, the E(NK) model is an alternative form 
of the genotypic component of equation (2) that identifies the combined effects of the N genes by the NK 
term and the specificity of the resulting NK genotype values to an environment by nesting the (NK)i term 
for genotype i within a defined environment Ej. Thus, we can rewrite the E(NK) model in a form similar 
to equation (2) as: 
 

( )ijk j i ijkP E NK ε= +    .   (3) 
 
Thus, equations (2) and (3) define the rudimentary framework for computing the genotypic and 
phenotypic values for i genotypes in j environments from knowledge of how the N genes act to determine 
the trait phenotype. More generally we can recognize that the E(NK) model is itself a special case of the 
general expression for the equations of state of a system given by Casti (1997, pp.7-10): 
 

( )y uα= Φ    ,   (4) 
 
where; y is the phenotype, Φ is a mathematical relationship expressing the relationships among the 
observables, α is a parameter vector representing the genetic component of a system and u represents 
environmental conditions. Recognizing this relationship identifies and opens up a wide array of 
possibilities for studying the GP problem state space that go beyond the conventional framework of 
quantitative genetics. 
 
Predicting Phenotype from Genotype 
If we seek to improve the effectiveness of the conventional plant breeding process by using molecular 
technologies to design a knowledge-based approach to plant breeding, equations (2) and (3) emphasize 
that one of the major challenges that we face is how to discover the N genes that are important in 
determining the extant phenotypic variation for a trait and how to understand the various functions of 
these genes. Presently we rely heavily on our suite of forward and reverse genetics approaches to identify 
a relevant subset of the N genes. Functional genomics technologies can then be applied in combination 
with appropriately designed genetic experiments to provide the basis for diagnosing the interactions 
among the genes and the construction of gene network knowledge. A model based on the integration of 
such knowledge would then provide a starting point for understanding our current capacity to predict 
changes in the phenotype from directed changes in the genotype. Two approaches we can take to examine 
the magnitude of this GP prediction problem are: (1) Undertake an extensive experimental program to 
discover the genes and understand their function and role in determining phenotypic variation for the 
target traits, an activity that is currently underway in many research groups. Then use this knowledge to 
make predictions and conduct validation experiments to test the predictions. (2) Use the E(NK) model to 
create a simulated ensemble of many different “plausible” GP models and examine the robustness of 
alternative breeding strategies across these different GP models. We can combine both approaches by 
using the available experimental data to place the empirical GP models into the theoretical GP problem 
space. Within this paper we consider aspects of both approaches. 
 
From the body of quantitative trait mapping literature available today we observe that for every study we 
will obtain a statistical model that is a partial representation of the genotypic components of the 
phenotypic variation. Thus, we can rewrite a qualitative version of equation (1) to represent this situation 
as: 
 

( ) ( )ijk j Expl UnExpl Expl UnExpl ijkP E G G GE GE ε= + + + + +    , (5) 
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where the subscripts Expl and UnExpl identify explained (or estimated) and unexplained components of 
the G and G×E components of the linear model, respectively. Here, we treat the explained and 
unexplained components of the model as independent terms. It is emphasized that this independence is 
not necessary and is only a subset of the more general case. If the explained component interacts with the 
unexplained component we have a much more complex situation than is indicated by equation (5). In the 
presence of such interactions we may expect to overestimate the level of predictability within the system 
based on the GP knowledge we have acquired. A tangible example of this situation would be when we 
move alleles of genes from one population into another and observe different effects of these alleles in 
these different contexts. Because of space constraints we do not give a formal treatment of the more 
general case here. Instead below we include some preliminary discussion of its implications for 
predictability within the genotype-environment system.  
 
We can quantify equation (5) by replacing the explained component directly with the current version of 
the GP model for a trait. For example, if we had identified two QTL for the trait and QTL 1 is constitutive 
in its behavior and effects across environments whereas QTL 2 is facultative, with effects on the trait 
phenotype that are specific to the types of environment, using our notation above, but using Q for a QTL 
rather than γ for a gene, we could write equation (5) as: 
 

( |1) ( |2) | |( )ijk j g i g ij UnExpl i UnExpl ij ijkP E Q Q G GE ε= + + + + +    ,  (6) 
 
where the estimates of the 2 QTL effects represent an explained component. While we can use estimates 
of QTL effects as a parameterization of the explained component of the model, this opens the question of 
how to appropriately represent the unexplained component. A classical approach would be to assume that 
the unexplained component was independent of the explained component and can be represented by 
effects drawn from some underlying distribution, such as the normal distribution. However, if we apply 
the same general arguments regarding the limitations of the assumptions of independent gene effects 
given above to the currently unexplained component we may consider that representing the unknown 
component of the model in such a manner may be an overly optimistic representation. An alternative 
approach that we have considered is to represent the known component by the QTLs and the unknown 
component by an ensemble of E(NK) model parameterizations. Thus, we would rewrite equation (6) as: 
 

( |1) ( |2) ( )ijk j g i g ij j ij ijkP E Q Q E NK ε= + + + +    ,   (7) 
 
where we have retained the two QTL from equation (6) as the explained genetic component and defined 
the unexplained genetic component as an E(NK) model parameterization. A macro-environmental effect 
Ej and a micro-environmental noise effect εijk associated with measurement k on genotype i in macro-
environment j are both retained in this model expression. The Ej term could in fact be omitted but we 
leave it in here for consistency and we define the macro-environments to be the same as the environment-
types specified within the Ej(NK)ij component of the model. Equation (7) is an expansion of equation (3) 
using empirical results from the currently available GP model. Equation (7) can be parameterized by 
specifying the effects for a subset of the N genes defined in equation (3) based on experimental estimates 
of their effects and specifying the remainder of the N genes by sampling effects from some underlying 
distribution. We refer to equation (7) as a hybrid model, where the explained component is parameterized 
by estimates of gene effects obtained from experimental results and the unexplained component is 
stochastically parameterized by drawing effects from a specified distribution of effects. Equations (5) - 
(7) represent one example of how this approach can be implemented within the framework indicated by 
equation (3). We can indicate a more general application for QTL models by writing: 
 

( ) ( )ijk j ij j ij ijk
Expl UnExpl

P E NK E NK ε⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦    .   (8) 

 
Equation (8) can be applied to incorporate effects attributed to epistasis in the form of QTL×QTL 
interactions in the explained or unexplained component. Further extensions of this framework that we 
have considered include allowing some of the K interactions to occur between some of the N genes in the 
explained component and those in the unexplained component to simulate the effects of partial 
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explanation of a gene network or the gene-by-background effects often experienced in plant breeding, 
where QTL or gene effects are population (cross) specific. We can expect to observe a range of simple to 
complex situations and a mixture of successes and failures in breeding programs as we attempt to validate 
QTL effects and use the QTL alleles in applied breeding (e.g. Bouchez et al. 2002, Ho et al. 2002, Castro 
et al. 2003). 
 
To study what we perceive to be a complex biological problem it seems appropriate at this time, while we 
are currently building the research foundations for molecular approaches to plant breeding, to explore 
some of the developments and emerging concepts in the area of complexity science and its potential 
applications to the study of complex biological systems. Casti (1997a,b) gives an introduction to this field 
and some of the quantitative modeling tools that have been applied. Many of the applications of these 
methods have focused on the GP modeling problem. In general, but with a few notable exceptions, this 
work has tended to remain outside of the mainstream genomics, quantitative genetics and plant breeding 
communities. The current separation of these efforts may in part be explained by a combination of the 
recent emergence of a critical mass of research in the complexity science field, the historical momentum 
behind the classical quantitative genetics approaches and the recent widespread availability of high 
throughput technologies for the study of molecular processes in biology. With the growing availability of 
large data sets we anticipate and observe that there is a growing dialogue between these research fields 
within the genetics research community. Therefore, we are possibly positioned at a point in time where 
there is a broadening of the tools that will be used in the field of quantitative genetics. As one example of 
such an approach we will use equation (8) in combination with published QTL results to examine 
expected response to selection for breeding strategies. To do this we discuss the concept of the genotype-
phenotype space for a trait model in terms of landscape concepts.  
 
Fitness and Performance Landscapes 
Sewall Wright (1932) introduced the idea of representing the relative performance of populations of 
genotypes using a landscape metaphor. He focused on evolutionary processes and therefore referred to 
these as fitness landscapes. From a plant breeding perspective we will generally prefer to refer to these as 
phenotype or performance landscapes and in some cases adaptation landscapes. In Wright’s framework, 
high-points on the landscape represented regions of genetic space where individuals had high fitness and 
low-points represented regions of low fitness. The metaphor of the shape of the genotype-phenotype 
space as a landscape has been widely used in applications of quantitative genetics to the study of 
evolutionary processes, but has only been used in a more limited manner to study plant and animal 
breeding processes. Kauffman (1993) applied the concept of fitness landscapes to study features of the 
genotype-to-phenotype relationship for the NK model. Kauffman structured his genetic space by 
organizing genotypes into genetic neighborhoods based on numbers of alleles shared by the genotypes. 
Thus, all genotypes are arranged in what can be considered a hypercube and are one step away from all of 
their possible one-mutant neighbors. A fitness value is computed for each genotype and the smoothness 
or ruggedness of the landscape is a function of how the fitness values change with steps between 
genotypes on the hypercube. We recognize that the landscape metaphor does not work for everybody and 
may not be appropriate for all situations, but we choose to use it while remaining vigilant of its 
limitations. 
 
Applying the fitness landscape framework of Kauffman, a single genotype is considered a vertex (an 
intersection point) within the hypercube that defines N-dimensional genetic space. Thus, a population of 
genotypes may be considered as a population of such vertices. The outcomes of the selection process may 
be viewed as the creation of a new population of vertices from an old population of vertices within the 
confines of the N-dimensional genetic space. This concept of genetic space may seem theoretical and 
abstract to the applied breeder. However, this framework can be implemented within a computer 
simulation environment using equation (3) to investigate any plant breeding process for a range of simple 
to complex GP models of traits (Podlich and Cooper 1998).  
 
The genetic architecture of traits is a continuum: Simple to Complex Trait Genetics 
A key motivating principle for organizing and intensively exploring the GP modeling problem space on a 
complexity continuum is to gain some theoretical insights into the differences in power that can be 
expected of alternative breeding strategies for a range of situations that simulate simple to complex trait 
genetics. Using the E(NK) model as defined in equation (3), levels of E, N and K are selected and 
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combined with a range of levels of heritability to stratify the complexity continuum in ways that are 
considered relevant to experimentally determined features of GP models. The power of different breeding 
strategies to achieve progress from defined starting points on the performance landscape and thus 
improve the trait phenotype by searching the performance landscape is compared across the levels of E, N 
and K and heritability considered. 
 
Here we use Kauffman’s landscape concept in combination with the E(NK) model to examine how the 
shape of the trait phenotype landscape changes with the genetic architecture of a trait, as determined by 
changes in the levels of  E, N and K. By systematically changing the components of the E(NK) model we 
are attempting to simulate some of the context dependent properties of GP associations for traits as a 
continuum that ranges from simple to complex. The simple additive finite locus models are defined by the 
case where E=1 and K=0, thus E(NK) = 1(N:0) (Figure 1). As E and K are increased for a given level of 
N, the effects of the alternative alleles for the N genes become increasingly context dependent on the 
genotypes of other genes and on the range of environment-types in the target population of environments. 
Thus, context dependent effects of genes due to epistasis and gene-by-environment interaction can be 
simulated (Cooper and Podlich 2002).  

 
Figure 1.  Schematic of performance (adaptation) landscapes for GP models simulated using the E(NK) 
model. The additive E(NK) = 1(N:0) GP model is depicted as a single peak landscape. Models with increasing 
levels of epistasis (i.e. from K = 1 to K = N-1) are depicted by an increasingly more rugged landscape surface. 
Models with gene-by-environment (G×E) interactions are depicted as a series of different landscape surfaces 
for different environment-types (E). The GP response surface for the Target Population of Environments is 
depicted as a mixture of the response surfaces from the different environment-types (cf. Figure 2). 
 
Building on the landscape metaphor (Figure 1), we observe that as E and K are increased we move from a 
single peaked additive landscape for the E(NK) = 1(N:0) case to a multiple peaked landscape and 
ultimately a random landscape when K=N-1 and E>1 (Cooper et al. 2002). Kauffman (1993) discusses the 
shape of a landscape in terms of its ruggedness. We can quantify the complexity of the landscape shape 
by computing an autocorrelation coefficient between phenotype values for the neighboring genotypes in 
the genetic space for sequences of random walks across the landscape. A high value of the autocorrelation 
is associated with a relatively simple landscape structure and conversely a low value is associated with a 
complex (rugged) landscape (see Figure 2). While we are interested in the shape of the landscape for a GP 
model we are also interested in how effective different plant breeding strategies are at moving populations 
of genotypes across features of the different landscapes and in particular their power to move populations 
to positions of higher performance on any landscape. Thus, we construct a complexity-response plot for 
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any GP model by plotting the landscape autocorrelation coefficient against the response to selection for a 
breeding strategy (Cooper and Podlich 2002). The response can be measured in a number of ways; here 
we measure the change in population mean phenotype performance after a number of cycles of 
phenotypic (mass) selection for an ensemble of E(NK) models (Figure 2a). Using the complexity-
response plot we observe a quantitative representation of the expectation that as the complexity of the 
genetic architecture of a trait increases the response to selection tends to decrease. Equally we can 
construct a complexity-response plot that shows the difference in the response to selection between two 
breeding strategies (Figure 2b). In this example marker-assisted selection (MAS) is compared to 
phenotypic selection (PS). 

 
Figure 2. Complexity-response plots for an ensemble of E(NK) genetic models; (a) Response to phenotypic 
selection (change in population mean per cycle after five cycles), (b) The difference between marker-assisted 
selection (MAS) and phenotypic selection (PS) at cycle five (b). Each point in the ensemble represents a 
different genetic (GP) model implemented using equation (3); blue = additive (E=1, K=0); red=epistatic 
effects only (E=1, K>0); green=gene-by-environment effects (E>1, K=0); and grey=epistatic and gene-by-
environment effects (E>1, K>0) (cf. Figure 1). 
 
While our applications of the E(NK) model are defined to simulate putative properties of the ways genes 
interact in networks to determine trait phenotypes, it can be argued that there is nothing intrinsically 
biophysical about the genotype-to-phenotype mappings specified by any ensemble based 
parameterization of the E(NK) model. By drawing the effects of the gene combinations from some 
underlying distribution of effects we have defined genotype-to-phenotype mappings without any need to 
incorporate specific biological phenomena. Wherever it is feasible we seek to replace the artificial 
ensemble of E(NK) models of GP relationships with experimentally determined and validated GP models 
for traits. Given the diversity of the GP problem space such models will take many forms. At present 
some of the options available include: (1) direct parameterization or replacement of the E(NK) model 
using the results of QTL mapping studies for specific traits, i.e. equation (7); (2) molecular network 
models (e.g. Peccoud et al. 2004); (3) integration of separate trait mapping studies using appropriate 
ecophysiological models and crop growth and development framework (e.g. Cooper et al. 2002; Chapman 
et al. 2003; Reymond et al. 2003). Here we use equation (8) to superimpose some preliminary published 
QTL models for traits on the problem space depicted by the complexity-response plot given in Figure 2. 
 
Figure 3 shows the results of a simulation experiment where the complexity-response plot was 
constructed for two traits using the results reported from QTL mapping studies (Figure 3a: Lodging 
resistance in wheat; Keller et al. 1999, and Figure 3b: Head blight in barley; Zhu et al. 1999). In both 
examples, the explained genetic component was parameterized by the QTL information reported in the 
mapping study, and the unexplained genetic component was parameterized by an ensemble of E(NK) 
model effects following the example given in equation (7). For the traits considered here, the number of 
QTL in the explained component of the model was 10 additive QTL (Figure 3a; Lodging resistance) and 
6 additive QTL (Figure 3b; Head blight). Based on the results of the published QTL mapping studies, it 
was assumed that these QTL explained 72.6% and 14.0% of the genetic variation for the two traits, 
respectively, and the remainder of the genetic variation was generated by the unexplained E(NK) model 
component of equation (8). In this experiment, 50 different E(NK) model scenarios were considered for 
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the unexplained genetic component giving rise to 50 different parameterizations of equation (8) for each 
trait. The E(NK) models considered were a factorial combination of E=1, 2, 5, 10; N=2, 5, 12, 24, 36; and 
K=0, 1, 2, 5. Thus, the unexplained component of the genetic model ranged from simple (E=1, K=0; i.e. 
additive effects only) to complex (E=1, K>0; i.e. epistatic effects; E>1, K=0; i.e. gene-by-environment 
interaction effects; E>1, K>0; i.e. gene-by-environment interaction and epistatic effects). For each of the 
50 parameterizations of trait performance, a complexity-response plot was constructed by considering 
trait response after five cycles of directional selection and computing the autocorrelation coefficient for 
the generated performance landscape, as described above. The performance landscape was defined by the 
combined effects of the explained and unexplained genetic components of equation (8). Grey circles in 
Figure 3 represent the complexity-response values for each of the 50 parameterizations of trait 
performance.  
 
The spread of circles on each of the figure panels (Figure 3) illustrates the potential variation in the 
outcomes for different genetic models, in terms of the structure of the performance landscape and the 
expected response to selection. For the lodging resistance trait (Figure 3a), a large percentage of the 
genetic variation is explained by (known) additive QTL effects. Hence, there is a relatively small spread 
in the positions of the circles and the circles are confined to the upper-right portion of the complexity-
response plot, indicating high levels of response and a relatively smooth performance landscape. In 
contrast, for the head blight trait, a relatively small percentage of the genetic variation is explained by 
(known) additive QTL effects and hence trait performance is dominated by the “unexplained” E(NK) 
model component of the genetic model. This results in a large spread in the positions of the circles 
(Figure 3b). Furthermore, there is a large difference in the complexity-response values depending on 
whether the unexplained genetic component is defined as simple (i.e. additive; solid square) or complex 
(i.e. epistasis, gene-by-environment interaction; solid triangle). Based on the results of this experiment, 
we would have significantly less confidence in predicting the outcomes from selection for the head blight 
trait compared to the lodging resistance trait, assuming the results of the mapping studies are 
representative of the genetics of these two traits.  

 
 
Figure 3. The complexity-response plot for two traits, where the “unexplained” genetic component is defined 
by a range of E(NK) models. The circles indicate the results from individual E(NK) model parameterizations. 
The solid squares represent the average results from the E(NK) model parameterizations that contained 
additive effects only. The solid triangles represent the average results from the E(NK) model 
parameterizations that contained contain epistasis, gene-by-environment interactions, or a combination of 
both (cf. Figure 2a). 
 
The approach described above can be applied to the results of any QTL mapping study. Figure 4 shows 
the results of a simulation experiment where the above approach was applied to 130 different mapping 
studies reported in the plant breeding literature. The large variation in the outcomes emphasizes that the 
genetic architecture of traits can be considered a continuum from simple to complex. As illustrated by the 
clustering of additive models in the upper-right portion of the figure, assumptions about additivity can 
result in an optimistic view of the potential responses to selection for complex traits. However, a lower 
and perhaps more realistic representation of the expected responses to selection for complex traits is 
observed when different forms of context dependency (i.e. epistasis, gene-by-environment interaction) are 
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introduced into the genetic model (Figure 4). In some cases the assumptions of additivity or specific 
forms of epistasis and gene-by-environment interactions may be justified (e.g. Bouchez et al. 2002, 
Castro et al. 2003). In these cases we would expect to see a closer agreement between predicted and 
realized response to selection. In other cases the assumptions will not be justified and the agreement will 
be poor (e.g. Bouchez et al. 2002). 

 
 
Figure 4. The complexity-response plot based on the results of 130 mapping studies, where the “unexplained” 
genetic component is defined by a range of E(NK) models (cf. Fig. 2). The results from individual E(NK) 
parameterizations are shown in (a). The average results from the E(NK) model parameterizations that 
contain additive effects only (squares) or epistasis, gene-by-environment interactions or a combination of 
both (triangles) are shown in (b).  
 
Studying short-term and long-term response to selection 
The majority of the selection prediction equations used in plant breeding were developed to predict 
expected changes in mean trait performance of a trait(s) for one cycle of selection. The equations have 
some applicability over a number of cycles of selection for the case where the assumption that all genes 
have independent and cumulative effects is appropriate. However, in the presence of epistasis and gene-
by-environment interactions it is difficult to construct appropriate prediction equations for a single cycle 
of selection. Attempting to predict across multiple cycles of selection becomes extremely problematic.  
 
Our interests are broad. We want to understand the predictive power that can be achieved for a breeding 
strategy for the continuum of simple to complex traits in both the short-term and the long-term. Using the 
E(NK) model and the components described above, we have simulated genetic and phenotypic changes 
for simple to complex traits for a range of plant breeding strategies. Figure 5 shows the response to 
selection of two of the E(NK) model parameterizations considered for the trait head blight (Figure 3b). 
The first of these genetic models is considered relatively simple (i.e. E=1, K=0; additive effects only) and 
the second is considered relatively complex (i.e. K>0; epistatic effects). For the scenario where only 
additive effects are defined (blue lines), there is a rapid increase in trait performance and accumulation of 
favorable alleles over the cycles of selection. Furthermore, there is little variation among the 10 
independent runs of the breeding program, indicating similar trajectories have been taken in genetic space 
over the cycles of selection. For the model with epistatic effects (red lines), the phenotypic and genotypic 
response profiles are typical of what we observe for multiple peaked performance landscapes. Here, the 
response to selection is much slower than for the additive model and the genetic structure of the 
population displays greater variation from run to run. Thus, despite relatively similar values in trait 
performance, the populations from independent runs exhibit large genetic differences, both in the short-
term and long-term responses to selection. 
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(a) Trait performance of the population
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(b) Genetic structure of the population
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Figure 5. Response to selection for two genetic models. Each line represents an independent run of a breeding 
program from exactly the same starting reference population of germplasm. 
 
Discussion 
The nature of the GP relationship is fundamental to the outcomes of both conventional and molecular 
breeding strategies. Many have emphasized some of the complexities of the GP relationship when 
studying the regulation of gene expression, post-transcriptional modifications, protein structure and 
function, the inter-relationships among the products of gene expression within biochemical pathways, the 
organization and localization of pathways within cells, tissues, organs and the interplay of traits in 
determining organism adaptation to environmental conditions and the fitness of organisms within the 
context of populations of individuals. There is little doubt that viewed from a linear perspective the GP 
relationship is complex. We have discussed the GP model building process as a complement to our 
current gene discovery and functional analysis methods. There is nothing intrinsic about the experimental 
and quantitative gene discovery methods we use that make them the appropriate quantitative methods for 
building appropriate GP models. Thus, the experimental paths from organism and their traits to the gene 
may be different from the paths for predicting from gene to the traits of organisms. We seek a framework 
that enables us to begin to integrate our pieces of knowledge of the genotype-environment system and 
thus a strong interplay between our classical reductionist approaches to genetics and our ambitions to 
make strong predictions from this knowledge base to phenotypes within a complex biological system. 
Currently, for most of the traits of interest to us in the agricultural crops, at best we can say we have a 
partial picture of some of the important genes or genome regions (e.g. QTL). In the majority of these 
cases we have a list of candidate genes, some of their alternative allelic forms and a list of hypotheses 
about how these genes function to influence traits. Experimental testing and validation of all possible 
genes and hypotheses is impractical. The model-based predictions offer opportunities to prioritize and 
focus our experimental efforts, as has done in a number of other complex scientific and business settings. 
 
Today most scientists are aware of the growing recognition of the importance and implications of 
networks for the study of biological systems. We seek to understand the simple to complex continuum of 
GP relationships for traits and whole organisms within a genotype-environment system context. For some 
this goal seems unrealistic. The motivation for investigation of network models underlying GP 
relationships for traits, in contrast to the additive finite locus or infinitesimal models, is quite simply the 
growing body of data demonstrating the networks within the cell and higher levels of organization within 
the organism and the genotype-environment system. Along the simple to complex continuum the additive 
independent locus genetic model is viewed as a reference point from which we can study the properties of 
network models. An important question deals with understanding the organization of these networks, do 
they have properties of “scale free” networks, i.e. many genes with K< 3 or 4 and a few genes with K > 4, 
or are they organized in a highly modular or structured manner with “canalization” versus highly 
unstructured random networks? We might expect emergent properties of structured networks could have 
important consequences for breeding strategies.  
 
While we emphasize and discuss the challenges of building reliable GP models it is important to 
recognize that in many situations our conventional plant breeding strategies, based on selecting on the 
target trait phenotype, have made genetic progress for many of the complex traits in our major crops. 
Therefore, progress from selection can be made in the short-term and the long-term. Thus, the complexity 
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we face is not such that progress is not possible. The key question is whether with greater GP knowledge 
we can better understand, manage and direct the shape of the progress we will make in the future. Thus, a 
key consideration in this research field is judging the success of the GP knowledge and associated models 
as a basis for improving on our current capabilities to achieve response to selection for complex traits. We 
re-emphasize the point we made in the introduction; Ultimately it will not be sufficient to demonstrate 
that we can predict phenotypic variation and the phenotypic changes that result from selection using 
genetic information, but that this knowledge allows us to improve on the outcomes that are currently 
being achieved by conventional selection on phenotype alone.  
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